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Boundary layer variational principles: A case study
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Considering the model heat conduction problem in the setting of Grad’s moment equations, we demonstrate
a crossover in the structure of minima of the entropy production within the boundary layer. Based on this
observation, we formulate and compare variation principles for solving the problem of boundary conditions in
nonequilibrium thermodynamics.
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[. INTRODUCTION should be also noticed that the physical significance of the
boundary condition thus arising is rarely addressed, espe-
The goal of this paper is to study possibilities of formu- cially in the case of extra fields without direct physical inter-
lating variational principles for boundary conditions appear-pretation. The physics that is behind the behavior in the bulk
ing in the extended thermodynamic systems, where the usualay not be identical with the physics that is behind the
locally conserved field§the mass density, the momentum boundary conditions. For example, different type of forces
density, and the energy densire supplemented by various arise often on boundaries. It is thus possible that a direct
nonconserved fields such as extra stresses in rhedlblgy extension to boundaries of the potentials that are found to
higher-order moments of the one-particle distribution func-express the physics in the bulk is unrealistic.
tion in moment systems derived in kinetic theory of gases The second strategy is based on an attempt to express the
and plasmas, and many others. In order to be specific, wphysics that takes place on the boundaries. Let us assume
shall restrict our attention to the case of so-called extendethat as the result of the physical analysis one formulates a
thermodynamic system, underpinned by Grad’s momentoupled system of equations governing the time evolution in
method of the Boltzmann equation of rarefied §2k Since  both the bulk and on boundaries. States on the boundary, or
the seminal work of Grafi2], it is well known that the sta- in a boundary layer, are described by values on the boundary
tionary problems in moment equations is ill-posed. Indeed(or in boundary layepsof the fields chosen to describe states
on physical grounds, it is often unclear how to infer thein the bulk and possibly by some other fields defined only on
values of the higher moments on the boundaries without &oundaries or boundary layers. Some of the boundary state
more microscopic considerations. variables are fixed by an outside influence. The rest of them,
In a situation where imposing boundary conditions isthe uncontrollable boundary state variables, evolve in time
problematic or ill-posed, two main directions in the searchtogether with the bulk state variables. Let us assume that
for formulations of the boundary conditions can be distin-analysis of the time evolution equations shows that the un-
guished. The first direction can be broadly characterized as eontrolled boundary state variables evolve faster than the
variational approach. A typical and quite well known repre-bulk state variables and that they approach, as the time goes
sentative of this strategy is the so-called natural variationafo infinity, stationary values. These asymptotically reached
formulations of stationary equatiori8]. This approach is stationary values of the boundary state variables are then the
widely used, in particular, in numerical methods based orboundary conditions that we look for. We obtained them thus
local minimization schemes, such as the finite elementdy solving the time evolution equations. If in addition, we
method[4]. Without going into any detail here, we mention are able to recognize in the analysis of the fast time evolution
that if the solution can be written as a minimizer of a func-a Lyapunov functional, then also this second strategy be-
tional, then it is sometimes possible to extend the solutiortomes a variational method. This is because the boundary
from the bulk to the boundary, or to modify the functional in conditions we look for are in such a case extremal values of
such a way as to make this extension possible. By doing sahe Lyapunov functional. It is important to emphasize that
the natural variational formulations result in the so-calledthe way the variational functional is introduced in this sec-
natural boundary conditions. Many examples are given in thend strategy does not use the potential arising in the bulk, it
standard references on the finite elements meffid It  does not even use the assumption that such potential exists.
In fact, it is well known[5] that the time evolution in the
bulk of driven systems cannot be often associated with any
*Corresponding author. Email address: ikarlin@ifp.mat.ethz.ch potential. The potential introduced in the second strategy
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arises from the time evolution of the boundary state variablesvhat happens if the entropy production is considered not in
and not from the time evolution in the bulk. the total volume of the system but rather is localized to suf-
The second strategy has been mentioned in [®¢fs an  ficiently thin boundary layers. A physical interpretation of
illustration of a general approach to the thermodynamics ofur results is as follows: If the domain of integration of the
driven systems. The potential-driven time evolution of€ntropy production is restricted to sufficiently thin boundary
boundary state variables have also been used in[Refn  layers, the result of the type minimization suggests the opti-
the context of the investigation of consequence of the stickinal choice of the boundary condition. Moreover, shrinking
slip boundary conditions in flows of polymeric liquids. The the domain where the entropy production is sampled from
authors of Ref[7] do not discuss the physical derivation of the whole bulk to the boundary layer reveals a behavior typi-
the boundary time evolution. Also the potential is introducedc@l for critical phenomena, with the optimal value of the
in Ref.[7] completely phenomenologically. b_oundary condition appearing as a reSL_JIt of passing a critical
Our study in this paper remains also on a phenomenologiiZ€ of the Iaygr. Vanoys f_eatures of th|§ transition are stud-
cal level. We do not discuss explicitly the boundary timeied, and plausible realizations of the minimum principle are
evolution, we are not therefore in a position to recognize théuggested.
pertinent potential in its analysis. We have to use different
considerations in order to identify it. Below, we shall follow |I. ENTROPY PRODUCTION IN THE BOUNDARY LAYER

a recent work of Struchtrup and Weisj (see also Ref.9]). , ) .
Struchtrup and Weisf8] proceed in three steps. In the context of Grad’s methd@] and its variations, the

First, they suggest to consider the local entropy produc-s_tate of the system is descr_ibed by the locally conserved
tion o as a candidate for the potential that will eventually fields M(x,t) (the local density, momentum, and energy
determine the missing boundary conditions. While it is quite@d @ finite number of nonconserved fielgx,t) (nonequi-
well known [5] that o cannot always be directly related librium stress tensor, heat flux, fluxes thereof_).eT_'me _flelds
to the time evolution in the bulk, it can still be relevant to N @€ usually higher-order moments of the distribution func-
the boundary conditiongespecially in the light of our Hon. which gives a full description of the system at a more
expectation—based on the physical analysis sketched in t%;lcrosgopm level of f[he kinetic equation. Grad's method re-
preceding paragraph—that the boundary time evolution caf{uces in @ systematic way the description from the level of
always be associated with a potential the kinetic equation for the one-body distribution function to

Second, having chosen one has to ask the question how the level _of a closed set of the moment equations involving
does this potential depend on the boundary conditions‘?nly the f|e|d$M and_N. The nanlinear cqupled sets of equa-
Struchtrup and Weis§8] answer this question as follows: tions in partial derlva_tlves are genepcally referred to as
First, they limit the analysis to stationary solutions. Let theGrad’s moment equations, and are given in many sources.

stationary solution corresponding to a given boundary conl N€ original Grad's methoff], technically based on a Her-

dition is found. The entropy productiam, evaluated on the mite _polyn(_)migl expansion of th_e o_ne-body_ distribution
stationary solution, becomes a function of both the bulk andunction satisfying the Boltzmann kinetic equation, has been
the boundary state variables extended and modified by many authors for various kinetic

So far, we have arrived at a potential depending on th&duationg12—14. In particular, a generalization of Grad's
bulk and the boundary state variables. What remains is t ethod to nonmoment variables has been addressed in Refs.

make the third step, and eliminate the dependence on tHg>~17- Examples of Grad’s moment equations will be con-

bulk variables. It is this third step where our analysis differsS/deréd in the following section. Here we remind that, each
from Refs.[8,9]. It has been noticed in Ref8] that elimi- Grad’'s moment system is equipped with the function of the

nation of the bulk variables by averaging the entropy producfi€lds; o the local entropy production. Functian is non-

tion over the entire volume—and which eventually leads to€92tive and equals to zero only at the local equilibrium, and
the total entropy production principle in a spirit of Glans- It ¢an be computed once the dissipative terms in the under-
dorff and Prigogind 10,11—gives apparently wrong results lying kinetic equation are sp.eC|f|e(cﬂqr. example, once the

in applications to the boundary condition problem. Instead, £°!tzmann collision integral is specifigdThe form of the
different, much more local analysis has been adopted

igntropy production also depends on the version of Grad's
Refs.[8,9]. However, the physical significance of such modi- method used in the derivation of moment equations. In many
fications, as well as the physical reasons why the global a

applications, the typical outcome for the entropy production
eraging out the bulk variables is not be working have notS @ quadratic form in the fieldsl (this is valid for small

been addressed. deviations from local equilibrium
In this paper we address the question how physically
meaningful variational principles for boundary conditions o= [N; = NEYCM)TA; (M)[N; = NS(M) T, (D)
i]

can be constructed on the basis of the entropy production by

exploring more possibilities than those explored in Refs.

[8,9]. The intuitive idea behind our consideration is that thewhere NF{M) are values of the nonconserved fields in the
additional variables in stationary problems often have a siglocal equilibrium(in terms of the kinetic theory, the latter is
nificance of a description of the boundary lay#is descrip-  given by the local equilibrium distribution function that de-
tion is greatly reduced, as compared to a full kinetic equapends parametrically only on the locally conserved fidls
tion). By adopting this viewpoint, we study the question as tothe standard example is the local Maxwell distribution func-
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tion), and whereA;; is the positive semidefinite matrix, with appearing, and which would correspond to the physically
matrix elements dependent on the functidvisand also on plausible value of the boundary conditidty,. We further
the details of particle’s interaction in the kinetic pictiseat-  expect that variations of these minimal values is not large for
tering cross sections, for example the entire interval e [O,L].

In order to solve the stationary version of Grad’s moment This expectation is also motivated in part by the sugges-
equations for the time-independent fielt#s(x) andN(x), in  tion of Struchtrup and Weisg8] who postulated a much
a domainU € R", with the boundanpU, a set of boundary more local functional as compared to the total bulk-averaged
conditions should be provided. In the typical situation, whichentropy production(3), namely, that correct configurations
we here assume, the boundary conditions for the locally conshould minimize the maximum of the local entropy produc-
served fieldsM (x) are known, and the question concernstion, thus, considering the functional,
only the additional field®(x). To this end, we adopt the first
two steps as suggested by Struchtrup and W&iks-irst, we _
consider the set of all possible solutions to stationary Grad’s ¥sudNo) Tix 7(XNp). @
equations with the fixed boundary conditions for the con-
served fields,M,=M(x)|,,, and with various boundary
conditions for the nonconserved field§,=N(x)|,y. (In
principle, other types of boundary conditions could be a
dressed, including derivatives of eithidror N, but we shall
not consider this option hereSecond, evaluating the local
entropy production functionall) on the configurations of
the fields thus obtained, we get a set of functianés,Ny),
parameterized by the boundary condition ddta Finally, in
the third step, one has to eliminate the dependence and

Our suggestion to study functional®) that sample the
g-entropy production more locally in space as compared to the
total entropy productiori3) does not coincide with the “ul-
tralocal” functional (4), and results are not expected to be
identical even in the one-dimensional cases considered be-
low. It should be stressed that a correct mathematical defini-
tion of the system of the test boundary lay&s requires
more restrictions but we do not consider this point rigorously
; . ; here. Finally, the notion of the boundary layer is pertinent to
to end up with a potentiall’(N;) depending only on the the underly?/ng kinetic theory where it c)ém %e Corgputed ina

boundary dateN,, and whose minima should suggest the . n ;
choice of the boundary condition. It is this third step where!ceW model setting$18]. However, it is not straightforward to

we offer a more detailed analysis as compared o e "UEEAE BERR CLCR 0 W RRCTR NS
Specifically, we introduce an additional structure into theCom letelv thex dependence from the local entro roduc-
domainU. Being inspired by the concept of the boundary P y P Py p

layer, we introduce a one-parametric family of subdomain§Ion o(X.Np), rather, it replaces_ such a dependence by. a
B,, where L=0. EachB, (the test boundary layris more transpar_ent one-parar_netrlc dependence on the thick-
thought as a subdomain of the characteristic thickrigss nessL. In principle, any functlonaEBL for Le[OL] can be

attached to the boundas . For the test boundary lay&; , ~ "egarded as a potential. However, in practiagpriori esti-
we consider the layer-averaged entropy production, mates for the characteristic value lofare sometimes avail-

able. These values can be dependent on boundary conditions

1 for controllable and uncontrollable fields as walke follow-
2g (Np) = V(BL)fB o(X,Np)dx, (20 ing section. On the other hand, the set of the subdomains
- suggests a realization for the potentia(Ny) that compares
whereV(B,) is the volume of the subdomaB, . the averaged entropy production within the lagerwith the

The study of minimizers of the set of functiond® for ~ @veraged entropy production within the rest of the bulk,
various characteristic thicknesdesised to define the bound- U\BL .
ary layer is the central point of our pap@érpriori, it is clear
that, if the thickness of the layer is taken large enough, then
we eventually come to the total bulk-averaged entropy pro- EU\BL(Nb)Z
duction,

—V(U\BL) s o(X,Np)dx. (5)

1 Namely, smoothness of transition from the boundary layer
FuNo)= WJ'UU(X’Nb)dX' ®) into the bulk suggests the outcome for the boundary condi-
tion N, that guarantees that the difference between the aver-
As it has been already demonstrated with explicit ex-aged entropy production in the boundary layer and the aver-
amples in Ref[8], minimization of the functional$3) over  aged entropy production in the bulk is minimal. This results
the boundary dathl, selects the field configurations beyond in a minimization of the potential,
a reasonable physical interpretation. On the other hand, if we
go into the opposite direction, taking thinner test boundary — _
layers, and if the hypothesis about the fiehtlas playing the Va(No) |28L(Nb) EU\BL(NM' ©
most important role in the description of the physical bound-
ary layer is right, we might expect a crossover in the struc- Other variational principles can be constructed on similar
ture of the minimizers of the function&2). Specifically, we grounds. In particular, if one expects that a variation of the
expect that at some value., a local minimum will start entropy production in the boundary layer is considerably
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higher than in the bulk, then the functiordl, (6) can be choice é;=¢,=2/3(ap), wherea is a constant. The local
replaced with a functional involving only local measures ofentropy production for Grad’s syste(8) reads
activity

m1l/211, 1 1mA?

T, (Np)=maxa(X,Np) — mino(x,Np). (7) S P i
2(Np (X,Np) (X,Np) o q+120§2k_|_2.

xeB xe B KpT|5&T 9

Here miQeBLU(X'Nb) represents an approximation to the We assume that the walls are placedxat0 andx=a.
bulk activity. In the following section we shall test all this in Taking into account the fact that the pressure and the heat

the context of a model of heat transfer. fluxes are constant, the Eq$8) require one additional
boundary conditiorfin addition to boundary conditions for
I1l. ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM the temperaturd (0)=T,, T(a)=T,] in order to fix either

Following Refs. [8,9], we consider here a one- the heat fluxg or the variableA at one of the boundaries.

dimensional problem of a stationary heat transfer for Boltz-,[0 il;ﬁ:oudsuzres'[rgccj)gsledde(/;Tf';\bBISsK model. It proves convenient
mann’s gas at rest placed between two walls with fixed tem- '

peratures. The system is described by Grad’s 14-moment

equations. The set of field variables includes hydrodynamic , T , A L

fields M [the mass density(x), the average velocity (x), T'= Ty’ A= p(k/m) Ty’ =7k =

and the temperaturg(x) ], as well as the additional variables P(ETo)

N, which are functions of higher moments: The stress tensor

7(X), the heat fluxq(x), and one more scalar field(x),

which corresponds to the fourth-order moment of the one- , X , aT,

particle distribution function, X=3 7= TI?U- (10
p ETO

A(x)=f [f(©,x) =M (x),0)]v"dv,
R Reduced variable§10) are used elsewhere below, and we
Wherefeq is the |Oca| Maxwe”ian_ Omlt pl’imes in Ol’der to save notation.
We further assume that Grad's 14-moment distribution In terms of variableg10), Grad's Eqs.(8) for the BGK
function, f14(M(x),N(x),v), depends only on one spatial model may be written as
variable x, and that the velocity dependence is symmetric
with respect to rotations in thev{,v,) plane. In this case,

the average velocity vector, the traceless part of the stress Ix(A+15T)= _GKBGKq’
tensoror, and they, and thez components of the heat flux
vector, are equal to zero. The 14-moment Grad's system re- 1 1
duces to the system of four equations for the mass density I T=— 2_8K—A (11
p(x), for the pressurg(x), for the heat fluxq(x), and for RRCEN
the fourth momentA(x), and it read$8,9,13
where
4,9=0,
_ kTO 1/2’7'
xp=0, Keek=|T ] 2
2
(9)(( A+15p_) - —6;q, is Knudsen number. The local entropy producti®nfor the
p &1(p,T) BGK model takes the form
ap 1 1 2 2
= 2 e ® N LR
P 28&(pT) o= k1572t moTe| (12)
Here the pressurp(x) is related to the temperature, and
the density ap=(k/m)pT, and the positive coefficient; Equations(11) are easily solved analytically to give
andé¢, are the relaxation times, which can be functions of the
densityp and the temperatufg Explicit form of parameters 2 gx
&1, is determined by the collision model used in the corre- T(x)=To+W[exp—x/s)—1]— ¢ Kook’

sponding Boltzmann equation. Followih§,9] we consider

two models: the Bhatnagar-Gross-Krook equati@®GK

mode) that gives constant relaxation timés= ¢,= 7, and A(X)= — 15Wexp — x/s) + 5_6q2
the gas of Maxwell molecule@M model) that leads to the 57"
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0.02 T | E— T T T T T T T
0.018 Z:‘PSW : L=0 ]
0.016 L=0.001 i
0.014 -
0.012 . FIG. 1. Layer-averaged en-
tropy productionX, (q) (14) as a
o goik : | function of the boundary condi-
H . : tion q for different layer widths_
in the BGK model with Kggk
0.008 T =0.05 and T;—Ty=0.1. The
dashed line is the total bulk-
0.006 - averaged entropy production.
0.004F .
> L=0.01
0.002}- ;\\ T -
z, = - L=0.1
0 I I I I I T e~ E
-0.02 -0.018 -0.016 -0.014 -0012 -0.01 -0.008 -0.006 -0.004 —0.002 0
q
T,—To+209/(5Kggk) |s|~10*3 for the characteristic thickness of the boundary
= exp(—1s) -1 layer corresponding to this estimate.
First we compare functionals, for various layer widths
o8 L. Figure 1 demonstrates the layer-averaged entropy produc-

s=—1gd Kgok - (13) j[ion EL(q_) for differe_nt _bgundary layer thi_cknesks includ-

ing the limit of the infinitely thin layer, lim_2,(q), as
well as total entropy production, and the functional of
Struchtrup and Weis#&l).

We assumel,>To, then the meaningful values of the heat e observe that, whelnvaries from 1 to 0, there are two

flux q are negative. Exponential decay near the cold boundgyjitatively different outcomes for the entropy production

ary x=0 indicates the boundary layer, and the absolute vaIugL. ForL larger than a crossover vallg, functions,, ()

of srepresents its effective thickneg®mte that ifg<<0 then (14) has one unphysical minimurg=0, which coincides

s>0). Notice that this thickness depends both on the Knudy, it the minimum of the total bulk-avéraged entropy pro-

sen number, and on the yet unknown boundary condtion qyction(3). The latter unphysical minimum has been already
As it has been suggested in the preceding section, Wesported by Struchtrup and Wei8]. However, forL <L,
study minima of the one-parametric family of the layer- function 3.5 (q) (14) demonstrates another local minimum,

averaged entropy productions, Omin(L), although the unphysical minimum is still present.
As it is seen from Fig. 1, variations of the valgg,,(L) is
L 1 small within the interva[O,L.], and all the values,(L)
J cr(x,q)dx+J’ cr(x,q)dx). (14) are close to the analytical estimat&, on the one hand, and
0 1-L on the other hand, these values are close to the minimizer of
the function(4). This happens because the maximum of the
local entropy production in this and similar cases appears to
For small Knudsen numbers, and small difference of wallbe at the boundary, or within the boundary layer. It is also
temperatures, results can be compared with the analyticaémarkable that there is invariant point where all curves
estimate forg drawn from the conventional Fourier law. In 3 (q) almost touch the curve corresponding to the total en-
that case, as it follows from the Chapman-Enskog solutioriropy production. This point is almost the same for any
[20], g= —(5/2)KgekdxT. This allows to analytically esti- choice ofL and it is located very closely to the minimum of
mate the heat flux ag* ~ — (5/2)Kggk(T1—Tp). In the test  the functionW,(q) (6).
discussed below the following set of parameters has been Figure 2 compares the three potentials, (6), ¥, (7),
used:T(1)=1.1,T(0)=1, andKggx=0.05, which results in and¥gy, (4). The value of boundary width in the definition
the analytical estimateg* = —0.0125 for the heat flux, and of potentials¥,; and ¥, was fixed with help of estimate

1
()= Z(
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T Y ; FIG. 2. Comparison of the po-
g 0.0251 // - tentials ¥, (6) and ¥, (7) with
] \\ p the Struchtrup-Weiss potential
& ool / i Vsw (4) in the BGK model with
' \ )/ Kgek=0.05 andT,— T=0.1.
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0
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q

L(g)=s(q) (13 that is the function of boundary condition Aminl ¥ sw] = —0.012 473. (15)
g- The minima of these functionals correspond to the follow-

ing values ofq; All these values are very close to the analytical estimate

g* = —0.012500. Notice that the estimajé corresponds to

Omin[ ¥'1]= —0.012 526, the most homogeneous profiles of the local entropy produc-
tion, and also of the temperatu(see Figs. 3, 4, 5, and).6
Ominl ¥ 2]=—0.012 505, Namely, one observes that if the valugsare not in small
—_ T,
— T'
Ll 2 Tl
1.001 _. Ty,
1.0008 L =T
115 40006 R
1.0004 T
108 10002t - _ZZC
— >l : : FIG. 3. Profiles of the reduced
0002 0004 0.006

temperaturel in the BGK model
7 with Kgg=0.05 and T,—-T,
=0.1 corresponding to optimiza-
tion with various functionals.
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1.25[
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1.1

FIG. 4. Profiles of the reduced
local entropy productiorr (b) in
the BGK model withKggk=0.05
andT;—Ty=0.1 corresponding to
optimization with various func-
tionals.
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X

vicinity of g* there is an active domain near left wak=0  help of different potentials they give practically the same
where an exponential decay shows up. It is interesting téemperature profiles.

note that the boundary layer near right boundary does not Although predictions based on all the three potentid,
have any such activity, what is a consequence of the fact thd¥), and (4), are close to each other in the case of small
at this boundary the temperature flux is directed outward th&nudsen number, we have noticed considerable divergency
bulk. In spite of slight deviations in the results obtained withfor larger Knudsen number. In order to address this point, we

11

1.05

FIG. 5. The reduced tempera-
ture T in the BGK model with
Kggk=0.05 andT,—Ty=0.1 for
large deviations of boundary con-
dition g from its optimal value
g*=-0.0125: curve 1 corre-
sponds tog= —0.005, curve 2 to
g=-0.01, curve 3 tog=qg*
(Fourier law, curve 4 toq=
—0.015, curve 5 tg=—0.03.

0.95

09

085 1 1 1 1 1 1 1 1 1
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0.016
0.014 |
FIG. 6. The reduced local en-
0.012H tropy productiono in the BGK
model with Kggx=0.05 and T,
—Ty=0.1 for large deviations of
© oot boundary conditiory from its op-
timal value g* =—0.0125: curve
0.008 1 corresponds toq=—0.005,
curve 2 tog=—0.01, curve 3 to
0.006 g=q* (Fourier law, curve 4 to
’ g=—0.015, curve 5 t@= —0.03.
0.004
0.002
0 ;
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1

have increased the value of the paramétgk,, but have linearized BGK equations reported in the Ref9]. There is
lowered the value for the dimensionless temperature differa clear indication that when the temperature difference be-
ence. Figures 7 and 8 correspond to the parameter séween the walls is sufficiently small the solution of BGK
Kgek=0.5, andT;—T,=0.01. We then are able to qualita- kinetic equations gives almost linear temperature profiles in
tively compare this result with the direct solutions to thethe bulk even for large Knudsen numbers. Solution based on

FIG. 7. Functionals¥, (6)
and ¥, (7) as compared to the
Struchtrup-Weiss potentialy gy
for the BGK model with moderate
Knudsen numbeiKgsx=0.5 (T,
—T,=0.01).

potentials

1 1 1= = - - 1 1 1 1 L~

0
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FIG. 8. Temperature profiles
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our variational principles confirms to this picture qualita- Similar analysis has been performed for the model of
tively. However Figs. 9 and 10 indicate that the Struchtrup-Maxwell molecules. In terms of variabl€40), Grad’s mo-
Weiss functional¥’ g,y point out the solution that is consid- ment system for the MM model reads

erably far from “almost linear” unlike the case of small

Knudsen numbers, which proves that our boundary layer

functional are more relevant to the problem of selection of 1q

boundary conditions. O(AFIST) =4 3

T (18
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\ i tropy production® (q) (14) as a

< o0k \ ! | function of the boundary condi-
W ‘\ " tion q for different layer widtha_
\ | in the Maxwell molecules model
0.008

(Kpym=0.05). The dashed line is
! ! the total bulk-averaged entropy
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0.006 \ , b production.
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’ molecules.
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1 1 A The local entropy production takes the form
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where Knudsen numbé€, is, 7 1IKym | T3 12714 (17
312 . .
_(kTo/m) Because of the nonlinearity, Eq&L6) were solved nu-
MM apa merically. For small Knudsen numbers, and small difference
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FIG. 11. Profiles of the re-
- 1.06 duced temperatur€& in the model

of Maxwell molecules corre-
sponding to minima of various po-

1.04 tentials.
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FIG. 12. Profiles of the re-
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various potentials.
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X
of the wall temperatures, the heat flux has been estimated as V. CONCLUSION AND DISCUSSION
q*~—(15/4)KumT'(T1—To), where T'=(Ty+Ty)/2.
With this, the boundary layer is estimated as In this paper, we have studied possibilities of introducing

~1eKumT’|q]. Like for BGK model we have input the latter a variational principle for boundary conditions for Grad mo-
estimation into the expressiofi) and(7) in order to com-  ment equations. Our approach is based on a systematic intro-
pletely specify the function®;(q) and¥y(q). In the test  duction of the boundary layer into a phenomenology of
presented below the following parameters were us@gly  variational principles. The approach has been tested for mod-
=0.05, To=1.0, andT;=1.1, which results in the estimate ¢|s of heat conduction suggested earlier. We have observed
q*~-0.01969. o that variation of the thickness of the domain taken to repre-
All results fo_r the MM model are similar to those for the ggnt the boundary layer results in a crossover: Wheri.,
BGK model discussed above. Figure 9 demonstrates thgen the minimum of the layer-averaged entropy production
crossover in the structure of the layer-averaged entropy prosqresnonds to the one predicted be the total bulk-averaged
duction under variation of the layer width. Potentials , entropy production. However, iE<L,, the second local

W5, and ¥, are compared in Fig. 10. Corresponding minimum appears, and which corresponds to the estimate
minima of these potentials occur at the following values of . . o
the heat flux: close tp the one.resultmg from_ the Struchtrup—We|ss mini-
max principle. This crossover gives an opportunity to define
the boundary layer without restoring to more precise but also
Umir[V1]= —0.019 777, more elaborative microscopic considerations. This observa-
tion has led us to variational principles that compare the
average entropy production in the boundary layer and in the
Ui ¥,]=—0.019 714, bulk. The results have been found in excellent agreement
with analytical predictions. The results of this study therefore
make us confident in the usefulness of the entropy produc-
Aminl ¥ sw]= — 0.019643. (18)  tion in the boundary layer for the problem of boundary con-
ditions in the extended thermodynamic systems. The ap-
proach is computationally more advantageous than the use of
All these values agree well with the estimatg ~ the minimax principle of Ref(8] since it avoids a computa-
—0.019 69. Notice that in both the BGK and the MM mod- tionally intensive operation of finding extrema of this en-
els, potential, gives the result most close to the analytical tropy production in entire volume, rather, it is based on a
prediction. Temperature and local entropy production profilesimple integral measure and allow to use simplifications for
are demonstrated in Figs. 11 and 12. small boundary layer width.
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Finally, it should be stressed that, while the problem ofnamic approach to the boundary condition. This point is left
boundary conditions for moment equatiorfand, more for future work.
broadly, for stationary thermodynamic systems with addi-
tional fieldg can be addressed indeed through consideration ACKNOWLEDGMENT
of plausible minimum principles, the complete understanding We thank Professor Hans Christiartti®ger for valuable
of those can be accomplished only in the framework of dy-discussions of the results.
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