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Boundary layer variational principles: A case study
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Considering the model heat conduction problem in the setting of Grad’s moment equations, we demonstrate
a crossover in the structure of minima of the entropy production within the boundary layer. Based on this
observation, we formulate and compare variation principles for solving the problem of boundary conditions in
nonequilibrium thermodynamics.
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I. INTRODUCTION

The goal of this paper is to study possibilities of form
lating variational principles for boundary conditions appe
ing in the extended thermodynamic systems, where the u
locally conserved fields~the mass density, the momentu
density, and the energy density! are supplemented by variou
nonconserved fields such as extra stresses in rheology@1#,
higher-order moments of the one-particle distribution fun
tion in moment systems derived in kinetic theory of gas
and plasmas, and many others. In order to be specific,
shall restrict our attention to the case of so-called exten
thermodynamic system, underpinned by Grad’s mom
method of the Boltzmann equation of rarefied gas@2#. Since
the seminal work of Grad@2#, it is well known that the sta-
tionary problems in moment equations is ill-posed. Inde
on physical grounds, it is often unclear how to infer t
values of the higher moments on the boundaries withou
more microscopic considerations.

In a situation where imposing boundary conditions
problematic or ill-posed, two main directions in the sear
for formulations of the boundary conditions can be dist
guished. The first direction can be broadly characterized
variational approach. A typical and quite well known repr
sentative of this strategy is the so-called natural variatio
formulations of stationary equations@3#. This approach is
widely used, in particular, in numerical methods based
local minimization schemes, such as the finite eleme
method@4#. Without going into any detail here, we mentio
that if the solution can be written as a minimizer of a fun
tional, then it is sometimes possible to extend the solut
from the bulk to the boundary, or to modify the functional
such a way as to make this extension possible. By doing
the natural variational formulations result in the so-cal
natural boundary conditions. Many examples are given in
standard references on the finite elements method@4#. It
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should be also noticed that the physical significance of
boundary condition thus arising is rarely addressed, es
cially in the case of extra fields without direct physical inte
pretation. The physics that is behind the behavior in the b
may not be identical with the physics that is behind t
boundary conditions. For example, different type of forc
arise often on boundaries. It is thus possible that a dir
extension to boundaries of the potentials that are found
express the physics in the bulk is unrealistic.

The second strategy is based on an attempt to expres
physics that takes place on the boundaries. Let us ass
that as the result of the physical analysis one formulate
coupled system of equations governing the time evolution
both the bulk and on boundaries. States on the boundar
in a boundary layer, are described by values on the bound
~or in boundary layers! of the fields chosen to describe stat
in the bulk and possibly by some other fields defined only
boundaries or boundary layers. Some of the boundary s
variables are fixed by an outside influence. The rest of th
the uncontrollable boundary state variables, evolve in ti
together with the bulk state variables. Let us assume
analysis of the time evolution equations shows that the
controlled boundary state variables evolve faster than
bulk state variables and that they approach, as the time g
to infinity, stationary values. These asymptotically reach
stationary values of the boundary state variables are then
boundary conditions that we look for. We obtained them th
by solving the time evolution equations. If in addition, w
are able to recognize in the analysis of the fast time evolu
a Lyapunov functional, then also this second strategy
comes a variational method. This is because the bound
conditions we look for are in such a case extremal values
the Lyapunov functional. It is important to emphasize th
the way the variational functional is introduced in this se
ond strategy does not use the potential arising in the bul
does not even use the assumption that such potential ex
In fact, it is well known@5# that the time evolution in the
bulk of driven systems cannot be often associated with
potential. The potential introduced in the second strate
©2002 The American Physical Society01-1
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arises from the time evolution of the boundary state variab
and not from the time evolution in the bulk.

The second strategy has been mentioned in Ref.@6# as an
illustration of a general approach to the thermodynamics
driven systems. The potential-driven time evolution
boundary state variables have also been used in Ref.@7# in
the context of the investigation of consequence of the st
slip boundary conditions in flows of polymeric liquids. Th
authors of Ref.@7# do not discuss the physical derivation
the boundary time evolution. Also the potential is introduc
in Ref. @7# completely phenomenologically.

Our study in this paper remains also on a phenomenol
cal level. We do not discuss explicitly the boundary tim
evolution, we are not therefore in a position to recognize
pertinent potential in its analysis. We have to use differ
considerations in order to identify it. Below, we shall follo
a recent work of Struchtrup and Weiss@8# ~see also Ref.@9#!.
Struchtrup and Weiss@8# proceed in three steps.

First, they suggest to consider the local entropy prod
tion s as a candidate for the potential that will eventua
determine the missing boundary conditions. While it is qu
well known @5# that s cannot always be directly relate
to the time evolution in the bulk, it can still be relevant
the boundary conditions~especially in the light of our
expectation—based on the physical analysis sketched in
preceding paragraph—that the boundary time evolution
always be associated with a potential!.

Second, having chosens, one has to ask the question ho
does this potential depend on the boundary conditio
Struchtrup and Weiss@8# answer this question as follows
First, they limit the analysis to stationary solutions. Let t
stationary solution corresponding to a given boundary c
dition is found. The entropy productions, evaluated on the
stationary solution, becomes a function of both the bulk a
the boundary state variables.

So far, we have arrived at a potential depending on
bulk and the boundary state variables. What remains is
make the third step, and eliminate the dependence on
bulk variables. It is this third step where our analysis diffe
from Refs.@8,9#. It has been noticed in Ref.@8# that elimi-
nation of the bulk variables by averaging the entropy prod
tion over the entire volume—and which eventually leads
the total entropy production principle in a spirit of Glan
dorff and Prigogine@10,11#—gives apparently wrong result
in applications to the boundary condition problem. Instead
different, much more local analysis has been adopted
Refs.@8,9#. However, the physical significance of such mo
fications, as well as the physical reasons why the global
eraging out the bulk variables is not be working have
been addressed.

In this paper we address the question how physic
meaningful variational principles for boundary conditio
can be constructed on the basis of the entropy productio
exploring more possibilities than those explored in Re
@8,9#. The intuitive idea behind our consideration is that t
additional variables in stationary problems often have a
nificance of a description of the boundary layer~this descrip-
tion is greatly reduced, as compared to a full kinetic eq
tion!. By adopting this viewpoint, we study the question as
01120
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what happens if the entropy production is considered no
the total volume of the system but rather is localized to s
ficiently thin boundary layers. A physical interpretation
our results is as follows: If the domain of integration of th
entropy production is restricted to sufficiently thin bounda
layers, the result of the type minimization suggests the o
mal choice of the boundary condition. Moreover, shrinki
the domain where the entropy production is sampled fr
the whole bulk to the boundary layer reveals a behavior ty
cal for critical phenomena, with the optimal value of th
boundary condition appearing as a result of passing a crit
size of the layer. Various features of this transition are st
ied, and plausible realizations of the minimum principle a
suggested.

II. ENTROPY PRODUCTION IN THE BOUNDARY LAYER

In the context of Grad’s method@2# and its variations, the
state of the system is described by the locally conser
fields M (x,t) ~the local density, momentum, and energy!,
and a finite number of nonconserved fields,N(x,t) ~nonequi-
librium stress tensor, heat flux, fluxes thereof, etc!. The fields
N are usually higher-order moments of the distribution fun
tion, which gives a full description of the system at a mo
microscopic level of the kinetic equation. Grad’s method
duces in a systematic way the description from the leve
the kinetic equation for the one-body distribution function
the level of a closed set of the moment equations involv
only the fieldsM andN. The nonlinear coupled sets of equ
tions in partial derivatives are generically referred to
Grad’s moment equations, and are given in many sour
The original Grad’s method@2#, technically based on a Her
mite polynomial expansion of the one-body distributio
function satisfying the Boltzmann kinetic equation, has be
extended and modified by many authors for various kine
equations@12–14#. In particular, a generalization of Grad
method to nonmoment variables has been addressed in R
@15–17#. Examples of Grad’s moment equations will be co
sidered in the following section. Here we remind that, ea
Grad’s moment system is equipped with the function of
fields, s, the local entropy production. Functions is non-
negative and equals to zero only at the local equilibrium, a
it can be computed once the dissipative terms in the un
lying kinetic equation are specified~for example, once the
Boltzmann collision integral is specified!. The form of the
entropy production also depends on the version of Gra
method used in the derivation of moment equations. In m
applications, the typical outcome for the entropy product
is a quadratic form in the fieldsN ~this is valid for small
deviations from local equilibrium!,

s5(
i j

@Ni2Ni
eq~M !#Ai j ~M !@Nj2Nj

eq~M !#, ~1!

whereNi
eq(M ) are values of the nonconserved fields in t

local equilibrium~in terms of the kinetic theory, the latter i
given by the local equilibrium distribution function that de
pends parametrically only on the locally conserved fieldsM,
the standard example is the local Maxwell distribution fun
1-2
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BOUNDARY LAYER VARIATIONAL PRINCIPLES: A . . . PHYSICAL REVIEW E66, 011201 ~2002!
tion!, and whereAi j is the positive semidefinite matrix, with
matrix elements dependent on the functionsM and also on
the details of particle’s interaction in the kinetic picture~scat-
tering cross sections, for example!.

In order to solve the stationary version of Grad’s mom
equations for the time-independent fields,M (x) andN(x), in
a domainUPRn, with the boundary]U, a set of boundary
conditions should be provided. In the typical situation, wh
we here assume, the boundary conditions for the locally c
served fieldsM (x) are known, and the question concer
only the additional fieldsN(x). To this end, we adopt the firs
two steps as suggested by Struchtrup and Weiss@8#: First, we
consider the set of all possible solutions to stationary Gra
equations with the fixed boundary conditions for the co
served fields,Mb5M (x)u]U , and with various boundary
conditions for the nonconserved fields,Nb5N(x)u]U . ~In
principle, other types of boundary conditions could be a
dressed, including derivatives of eitherM or N, but we shall
not consider this option here!. Second, evaluating the loca
entropy production functional~1! on the configurations o
the fields thus obtained, we get a set of functions,s(x,Nb),
parameterized by the boundary condition dataNb . Finally, in
the third step, one has to eliminate the dependence onx, and
to end up with a potentialC(Nb) depending only on the
boundary dataNb , and whose minima should suggest t
choice of the boundary condition. It is this third step whe
we offer a more detailed analysis, as compared to Refs.@8,9#.

Specifically, we introduce an additional structure into t
domain U. Being inspired by the concept of the bounda
layer, we introduce a one-parametric family of subdoma
BL , where L>0. Each BL ~the test boundary layer! is
thought as a subdomain of the characteristic thicknessL,
attached to the boundary]U. For the test boundary layerBL ,
we consider the layer-averaged entropy production,

SBL
~Nb!5

1

V~BL!
E

BL

s~x,Nb!dx, ~2!

whereV(BL) is the volume of the subdomainBL .
The study of minimizers of the set of functionals~2! for

various characteristic thicknessesL used to define the bound
ary layer is the central point of our paper.A priori, it is clear
that, if the thickness of the layer is taken large enough, t
we eventually come to the total bulk-averaged entropy p
duction,

SU~Nb!5
1

V~U !
E

U
s~x,Nb!dx. ~3!

As it has been already demonstrated with explicit e
amples in Ref.@8#, minimization of the functionals~3! over
the boundary dataNb selects the field configurations beyon
a reasonable physical interpretation. On the other hand, i
go into the opposite direction, taking thinner test bound
layers, and if the hypothesis about the fieldsN as playing the
most important role in the description of the physical boun
ary layer is right, we might expect a crossover in the str
ture of the minimizers of the functional~2!. Specifically, we
expect that at some valueLc , a local minimum will start
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appearing, and which would correspond to the physica
plausible value of the boundary conditionNb . We further
expect that variations of these minimal values is not large
the entire intervalLP@0,Lc#.

This expectation is also motivated in part by the sugg
tion of Struchtrup and Weiss@8# who postulated a much
more local functional as compared to the total bulk-avera
entropy production~3!, namely, that correct configuration
should minimize the maximum of the local entropy produ
tion, thus, considering the functional,

CSW~Nb!5max
xPU

s~x,Nb!. ~4!

Our suggestion to study functionals~2! that sample the
entropy production more locally in space as compared to
total entropy production~3! does not coincide with the ‘‘ul-
tralocal’’ functional ~4!, and results are not expected to b
identical even in the one-dimensional cases considered
low. It should be stressed that a correct mathematical de
tion of the system of the test boundary layersBL requires
more restrictions but we do not consider this point rigorou
here. Finally, the notion of the boundary layer is pertinent
the underlying kinetic theory where it can be computed in
few model settings@18#. However, it is not straightforward to
incorporate these results into our considerations.

Notice that the above construction does not elimin
completely thex dependence from the local entropy produ
tion s(x,Nb), rather, it replaces such a dependence b
more transparent one-parametric dependence on the th
nessL. In principle, any functionalSBL

for LP@0,Lc# can be
regarded as a potential. However, in practice,a priori esti-
mates for the characteristic value ofL are sometimes avail
able. These values can be dependent on boundary condi
for controllable and uncontrollable fields as well~see follow-
ing section!. On the other hand, the set of the subdoma
suggests a realization for the potentialC(Nb) that compares
the averaged entropy production within the layerBL with the
averaged entropy production within the rest of the bu
U\BL ,

SU\BL
~Nb!5

1

V~U\BL!
E

U\BL

s~x,Nb!dx. ~5!

Namely, smoothness of transition from the boundary la
into the bulk suggests the outcome for the boundary con
tion Nb that guarantees that the difference between the a
aged entropy production in the boundary layer and the a
aged entropy production in the bulk is minimal. This resu
in a minimization of the potential,

C1~Nb!5uSBL
~Nb!2SU\BL

~Nb!u. ~6!

Other variational principles can be constructed on sim
grounds. In particular, if one expects that a variation of
entropy production in the boundary layer is considera
1-3
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higher than in the bulk, then the functionalC1 ~6! can be
replaced with a functional involving only local measures
activity

C2~Nb!5 max
xPBL

s~x,Nb!2 min
xPBL

s~x,Nb!. ~7!

Here minxPBL
s(x,Nb) represents an approximation to th

bulk activity. In the following section we shall test all this i
the context of a model of heat transfer.

III. ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM

Following Refs. @8,9#, we consider here a one
dimensional problem of a stationary heat transfer for Bo
mann’s gas at rest placed between two walls with fixed te
peratures. The system is described by Grad’s 14-mom
equations. The set of field variables includes hydrodyna
fields M @the mass densityr(x), the average velocityv(x),
and the temperatureT(x)#, as well as the additional variable
N, which are functions of higher moments: The stress ten
t(x), the heat fluxq(x), and one more scalar fieldD(x),
which corresponds to the fourth-order moment of the o
particle distribution function,

D~x!5E
R3

@ f ~v,x!2 f eq~M ~x!,v !#v4dv,

where f eq is the local Maxwellian.
We further assume that Grad’s 14-moment distribut

function, f 14(M (x),N(x),v), depends only on one spatia
variable x, and that the velocity dependence is symme
with respect to rotations in the (vy ,vz) plane. In this case
the average velocity vector, the traceless part of the st

tensort° , and they, and thez components of the heat flu
vector, are equal to zero. The 14-moment Grad’s system
duces to the system of four equations for the mass den
r(x), for the pressurep(x), for the heat fluxq(x), and for
the fourth moment,D(x), and it reads@8,9,13#

]xq50,

]xp50,

]xS D115
p2

r D526
1

j1~r,T!
q,

]x

qp

r
52

1

28

1

j2~r,T!
D. ~8!

Here the pressurep(x) is related to the temperature, an
the density asp5(k/m)rT, and the positive coefficientsj1
andj2 are the relaxation times, which can be functions of
densityr and the temperatureT. Explicit form of parameters
j1,2 is determined by the collision model used in the cor
sponding Boltzmann equation. Following@8,9# we consider
two models: the Bhatnagar-Gross-Krook equation~BGK
model! that gives constant relaxation timesj15j25t, and
the gas of Maxwell molecules~MM model! that leads to the
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choice j15j252/3(ar), wherea is a constant. The loca
entropy production for Grad’s system~8! reads

s5
m

k

1

pT H 2

5

1

j1

1

T
q21

1

120

1

j2

m

k

D2

T2J . ~9!

We assume that the walls are placed atx50 andx5a.
Taking into account the fact that the pressure and the h
fluxes are constant, the Eqs.~8! require one additiona
boundary condition@in addition to boundary conditions fo
the temperatureT(0)5T0 , T(a)5T1# in order to fix either
the heat fluxq or the variableD at one of the boundaries.

Let us first consider the BGK model. It proves convenie
to introduce reduced variables,

T85
T

T0
, D85

D

p~k/m!T0
, q85

q

pS k

m
T0D 1/2,

x85
x

a
, s85

aT0

pS k

m
T0D 1/2s . ~10!

Reduced variables~10! are used elsewhere below, and w
omit primes in order to save notation.

In terms of variables~10!, Grad’s Eqs.~8! for the BGK
model may be written as

]x~D115T!526
1

KBGK
q,

]xT52
1

28

1

qKBGK
D, ~11!

where

KBGK5S kT0

m D 1/2t

a

is Knudsen number. The local entropy production~9! for the
BGK model takes the form

s5
1

KBGK
H 2

5

q2

T2
1

1

120

D2

T3J . ~12!

Equations~11! are easily solved analytically to give

T~x!5T01W@exp~2x/s!21#2
2

5

qx

KBGK
,

D~x!5215W exp~2x/s!1
56

5
q2,
1-4
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FIG. 1. Layer-averaged en
tropy productionSL(q) ~14! as a
function of the boundary condi-
tion q for different layer widthsL
in the BGK model with KBGK

50.05 and T12T050.1. The
dashed line is the total bulk
averaged entropy production.
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T12T012q/~5KBGK!

exp~21/s!21
,

s52
28

15
qKBGK . ~13!

We assumeT1.T0, then the meaningful values of the he
flux q are negative. Exponential decay near the cold bou
ary x50 indicates the boundary layer, and the absolute va
of s represents its effective thickness~note that ifq,0 then
s.0). Notice that this thickness depends both on the Kn
sen number, and on the yet unknown boundary conditionq̂.

As it has been suggested in the preceding section,
study minima of the one-parametric family of the laye
averaged entropy productions,

SL~q!5
1

2L S E
0

L

s~x,q!dx1E
12L

1

s~x,q!dxD . ~14!

For small Knudsen numbers, and small difference of w
temperatures, results can be compared with the analy
estimate forq drawn from the conventional Fourier law. I
that case, as it follows from the Chapman-Enskog solut
@20#, q52(5/2)KBGK]xT. This allows to analytically esti-
mate the heat flux asq* '2(5/2)KBGK(T12T0). In the test
discussed below the following set of parameters has b
used:T(1)51.1, T(0)51, andKBGK50.05, which results in
the analytical estimate,q* 520.0125 for the heat flux, and
01120
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usu'1023 for the characteristic thickness of the bounda
layer corresponding to this estimate.

First we compare functionalsSL for various layer widths
L. Figure 1 demonstrates the layer-averaged entropy pro
tion SL(q) for different boundary layer thicknessL, includ-
ing the limit of the infinitely thin layer, limL→0SL(q), as
well as total entropy production, and the functional
Struchtrup and Weiss~4!.

We observe that, whenL varies from 1 to 0, there are two
qualitatively different outcomes for the entropy producti
SL . For L larger than a crossover valueLc , functionSL(q)
~14! has one unphysical minimumq50, which coincides
with the minimum of the total bulk-averaged entropy pr
duction~3!. The latter unphysical minimum has been alrea
reported by Struchtrup and Weiss@8#. However, forL<Lc ,
function SBL

(q) ~14! demonstrates another local minimum

qmin(L), although the unphysical minimum is still presen
As it is seen from Fig. 1, variations of the valueqmin(L) is
small within the interval@0,Lc#, and all the valuesqmin(L)
are close to the analytical estimateq* , on the one hand, and
on the other hand, these values are close to the minimize
the function~4!. This happens because the maximum of t
local entropy production in this and similar cases appear
be at the boundary, or within the boundary layer. It is a
remarkable that there is invariant point where all curv
SL(q) almost touch the curve corresponding to the total
tropy production. This point is almost the same for a
choice ofL and it is located very closely to the minimum o
the functionC1(q) ~6!.

Figure 2 compares the three potentials,C1 ~6!, C2 ~7!,
andCSW ~4!. The value of boundary widthL in the definition
of potentialsC1 and C2 was fixed with help of estimate
1-5
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FIG. 2. Comparison of the po-
tentials C1 ~6! and C2 ~7! with
the Struchtrup-Weiss potentia
CSW ~4! in the BGK model with
KBGK50.05 andT12T050.1.
n
w

ate

uc-
L(q)5s(q) ~13! that is the function of boundary conditio
q. The minima of these functionals correspond to the follo
ing values ofq:

qmin@C1#520.012 526,

qmin@C2#520.012 505,
01120
-
qmin@CSW#520.012 473. ~15!

All these values are very close to the analytical estim
q* 520.012 500. Notice that the estimateq* corresponds to
the most homogeneous profiles of the local entropy prod
tion, and also of the temperature~see Figs. 3, 4, 5, and 6!.
Namely, one observes that if the valuesq are not in small
-

FIG. 3. Profiles of the reduced
temperatureT in the BGK model
with KBGK50.05 and T12T0

50.1 corresponding to optimiza
tion with various functionals.
1-6
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FIG. 4. Profiles of the reduced
local entropy productions ~b! in
the BGK model withKBGK50.05
andT12T050.1 corresponding to
optimization with various func-
tionals.
n
th
th
ith

e

all
ncy
we
vicinity of q* there is an active domain near left wallx50
where an exponential decay shows up. It is interesting
note that the boundary layer near right boundary does
have any such activity, what is a consequence of the fact
at this boundary the temperature flux is directed outward
bulk. In spite of slight deviations in the results obtained w
01120
to
ot
at
e

help of different potentials they give practically the sam
temperature profiles.

Although predictions based on all the three potentials,~6!,
~7!, and ~4!, are close to each other in the case of sm
Knudsen number, we have noticed considerable diverge
for larger Knudsen number. In order to address this point,
-

-

FIG. 5. The reduced tempera
ture T in the BGK model with
KBGK50.05 andT12T050.1 for
large deviations of boundary con
dition q from its optimal value
q* 520.0125: curve 1 corre-
sponds toq520.005, curve 2 to
q520.01, curve 3 to q5q*
~Fourier law!, curve 4 to q5
20.015, curve 5 toq520.03.
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FIG. 6. The reduced local en
tropy productions in the BGK
model with KBGK50.05 and T1

2T050.1 for large deviations of
boundary conditionq from its op-
timal value q* 520.0125: curve
1 corresponds to q520.005,
curve 2 toq520.01, curve 3 to
q5q* ~Fourier law!, curve 4 to
q520.015, curve 5 toq520.03.
fe
s

-
he

be-
K
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on
have increased the value of the parameterKBGK , but have
lowered the value for the dimensionless temperature dif
ence. Figures 7 and 8 correspond to the parameter
KBGK50.5, andT12T050.01. We then are able to qualita
tively compare this result with the direct solutions to t
01120
r-
et

linearized BGK equations reported in the Ref.@19#. There is
a clear indication that when the temperature difference
tween the walls is sufficiently small the solution of BG
kinetic equations gives almost linear temperature profiles
the bulk even for large Knudsen numbers. Solution based
FIG. 7. FunctionalsC1 ~6!
and C2 ~7! as compared to the
Struchtrup-Weiss potentialCSW

for the BGK model with moderate
Knudsen number,KBGK50.5 (T1

2T050.01).
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FIG. 8. Temperature profiles
for moderate Knudsen numbe
KBGK50.5 (T12T050.01), in
the BGK model.
a-
p
-
ll
ye
o

of
our variational principles confirms to this picture qualit
tively. However Figs. 9 and 10 indicate that the Struchtru
Weiss functionalCSW point out the solution that is consid
erably far from ‘‘almost linear’’ unlike the case of sma
Knudsen numbers, which proves that our boundary la
functional are more relevant to the problem of selection
boundary conditions.
01120
-

r
f

Similar analysis has been performed for the model
Maxwell molecules. In terms of variables~10!, Grad’s mo-
ment system for the MM model reads

]x~D115T!524
1

KMM

q

T
, ~16!
-

l

y

FIG. 9. Layer-averaged en
tropy productionSL(q) ~14! as a
function of the boundary condi-
tion q for different layer widthsL
in the Maxwell molecules mode
(KMM50.05). The dashed line is
the total bulk-averaged entrop
production.
1-9
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FIG. 10. Comparison of the
potentialC1 ~6! and C2 ~7! with
the Struchtrup-Weiss potentia
CSW ~4! for the model of Maxwell
molecules.
ce
]xT52
1

42

1

KMM

D

qT
,

where Knudsen numberKMM is,

KMM5
~kT0 /m!3/2

apa
.

01120
The local entropy production takes the form

s5
1

15KMM
H 4

q2

T3
1

1

12

D2

T4J . ~17!

Because of the nonlinearity, Eqs.~16! were solved nu-
merically. For small Knudsen numbers, and small differen
-

FIG. 11. Profiles of the re-
duced temperatureT in the model
of Maxwell molecules corre-
sponding to minima of various po
tentials.
1-10



f

BOUNDARY LAYER VARIATIONAL PRINCIPLES: A . . . PHYSICAL REVIEW E66, 011201 ~2002!
FIG. 12. Profiles of the re-
duced local entropy productions
in the model of Maxwell mol-
ecules corresponding to minima o
various potentials.
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of the wall temperatures, the heat flux has been estimate
q* '2(15/4)KMMT8(T12T0), where T85(T01T1)/2.
With this, the boundary layer is estimated asL
' 42

15 KMMT8uqu. Like for BGK model we have input the latte
estimation into the expressions~6! and ~7! in order to com-
pletely specify the functionsC1(q) and C2(q). In the test
presented below the following parameters were used:KMM
50.05, T051.0, andT151.1, which results in the estimat
q* '20.019 69.

All results for the MM model are similar to those for th
BGK model discussed above. Figure 9 demonstrates
crossover in the structure of the layer-averaged entropy
duction under variation of the layer width. PotentialsC1 ,
C2, and CSW are compared in Fig. 10. Correspondin
minima of these potentials occur at the following values
the heat flux:

qmin@C1#520.019 777,

qmin@C2#520.019 714,

qmin@CSW#520.019643. ~18!

All these values agree well with the estimateq* '
20.019 69. Notice that in both the BGK and the MM mo
els, potentialC2 gives the result most close to the analytic
prediction. Temperature and local entropy production profi
are demonstrated in Figs. 11 and 12.
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IV. CONCLUSION AND DISCUSSION

In this paper, we have studied possibilities of introduci
a variational principle for boundary conditions for Grad m
ment equations. Our approach is based on a systematic i
duction of the boundary layer into a phenomenology
variational principles. The approach has been tested for m
els of heat conduction suggested earlier. We have obse
that variation of the thickness of the domain taken to rep
sent the boundary layer results in a crossover: WhenL.Lc

then the minimum of the layer-averaged entropy product
corresponds to the one predicted be the total bulk-avera
entropy production. However, ifL,Lc , the second local
minimum appears, and which corresponds to the estim
close to the one resulting from the Struchtrup-Weiss m
max principle. This crossover gives an opportunity to defi
the boundary layer without restoring to more precise but a
more elaborative microscopic considerations. This obse
tion has led us to variational principles that compare
average entropy production in the boundary layer and in
bulk. The results have been found in excellent agreem
with analytical predictions. The results of this study therefo
make us confident in the usefulness of the entropy prod
tion in the boundary layer for the problem of boundary co
ditions in the extended thermodynamic systems. The
proach is computationally more advantageous than the us
the minimax principle of Ref.@8# since it avoids a computa
tionally intensive operation of finding extrema of this e
tropy production in entire volume, rather, it is based on
simple integral measure and allow to use simplifications
small boundary layer width.
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Finally, it should be stressed that, while the problem
boundary conditions for moment equations~and, more
broadly, for stationary thermodynamic systems with ad
tional fields! can be addressed indeed through considera
of plausible minimum principles, the complete understand
of those can be accomplished only in the framework of
e

-

.

-

le

01120
f

i-
n
g
-

namic approach to the boundary condition. This point is l
for future work.
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